

ZEFFLE GK-870

FEVE Resin

Fluoropolymer, Weather, Chemical/ Solvent, and Stain Resistant Coating

Characteristics

Solventborne copolymer of tetrafluoroethylene and vinyl monomer

Chlorine free

Excellent weather resistance with decades of performance

Anti-corrosion, chemical resistance, and staining reduction / elimination

Various gloss and colors can be obtained

Curing from room temperature to 150°C

Cured with polyisocyanate or melamine-type crosslinking agents

Applications can be performed by various methods, including spraying, brushing, roller painting and in roll to roll processes

Low vapor permeability

Common ZEFFLE Applications:

Photovoltaic Backsheets

Industrial Paints

Protective Films

Overlaminates

Signage

Automotive

Window

Electronics Coatings

Chemical Resistant Topcoat

Real World Performance:

ZEFFLE GK-870 (TFE Based)

Competitor FEVE (CTFE Based)

Corrosion test (clear coat on Stainless Steel without primer): 4 years real world outdoor exposure in semi-tropical marine environment (Miyakojima Island in Okinawa, JP)

Xenon Arc Weathering of ZEFFLE Clear Coat on PET

Properties*	Value
Resin Viscosity (25°C; 10 sec ⁻¹)	550-1300 cps
Molecular Weight	Moderate
Resin Solids (wt%)	65%
Tg (°C)	25-28
OH Value (mg KOH/g polymer)	61-65
Acid Value (mg KOH/g polymer)	< 5
Solvent Blend	n-butyl acetate
VOC (Calculated via EPA Method 24)	396 g/L

^{*}Typical properties are not suitable for specification purposes.

Basic ZEFFLE Hardener Calculation:

Using Covestro AG, Desmodur N3300A as an example

All numbers should be referenced from COA

Grams of polyisocyanate for 100 grams of GK-870 varnish =

100 *(solid content/100) *OH number *NCO formula weight *(NCO/OH mole ratio)

(KOH molecular weight) x 1000 x (NCO content in polyisocyanate/100)

Solid contents of GK-870:
GK-870 solid hydroxyl value:
NCO formula weight:
65 mass %
64 mg KOH/g
42 g/mole

- NCO/OH mole ratio: 1.0 (Based on desired performance)

- KOH molecular weight: 56.1 g/mole

- Polyisocyanate NCO content: 21.8 mass % (ex. Desmodur N3300A)

 $= \frac{100 \times (65 / 100) \times (64) \times (42) \times (1.0)}{(56.1) \times 1000 \times (21.8 / 100)} = 14.3 \text{ g}$

Recommended Curing:

For Films

120°C for 5-6 minutes film temperature OR 150°C for 2 minutes film temperature Cool to 40°C before rolling Allow extended curing at 40 to 60°C for 2-3 days

For Paints

Ambient cure for ~72 hours or use catalyst or elevated curing temperatures.

LNG Supertanker

Comparison Chart

(Immersion Testing)

	Test Conditions	ZEFFLE	Acrylic	Current Acrylic Urethane
8% Buffered HF	1 hr @ RT	Α	В	С
50% HF	1 hr @ RT	Α	С	С
60% Sulfuric	24 hr @ RT	Α	Α	Α
Acid	2 hr @ 60°C	Α	A to B	В
50% Nitric Acid	2 hr @ RT	A to B	С	С
35% HCI	2 hr @ RT	Α	Α	Α
50% Acetic Acid	2 hr @ RT	Α	A to B	A to B
10% NaOH	14 days @ RT	Α	A to B	A to B
10% H ₂ O ₂	14 days @ RT	A to B	В	С
Butyl Acetate	24 hr @ RT	Α	A to B	A to B
MEK	24 hr @ RT	Α	A to B	A to B
Chloroform	24 hr @ RT	Α	A to B	В
Petroleum Benzene	24 hr @ RT	Α	A to B	В

Notes: A (Excellent), B (Fair), C (Poor)

UV Protection of PET

Xenon Arc Testing

1500 hrs Modified ASTM G-155 Cycle 1 from 0.35 to 1.5 W/m²

White Outer Layer	20° Gloss	
ZEFFLE	95%	
PVdF	71%	
PVF	9%	
UV Stabilized PFT	4%	