A COMPARISON OF THE PERFORMANCE OF FLUORINATED AND NONFLUORINATED BACKSHEETS

Daikin America Inc.
9/20/12
Ken Milam, Steve Johnson
Natalia Senior, Ron Hendershot
Daikin Industries, Ltd.

Daikin Group
15 Billion $ Sales (2011)
200 Companies Worldwide
44,000+ Employees

- Headquarters: Osaka, Japan
- Established in 1934

87%
Air-Conditioning Division
World Rank: #1

10%
Fluoro-Chemicals Division

3%
Other Divisions
(Computer Graphics, Hydraulics, …)
Backsheet Performance Comparison

• Photovoltaic backsheets
 – Ultraviolet light
 – Heat
 – Humidity
 – Break down the chemical bonds polymeric materials
 • Discoloration/ gloss reduction
 • Reduced mechanical strength
 • Reduced resistance to humidity

• Exposure
 – Xenon arc weatherometer per ASTM-G155

• Comparison
 – ZEFFLE™ coated backsheets
 – PVF backsheets
 – PVDF backsheets
 – Non-fluorinated laminated backsheet
Solar Panels

• Economics
 – Greater lifetime = Cheaper power

• Construction
 – Outer layers protect against moisture
 – Front layer is typically glass
 – Improve performance of backsheet

<table>
<thead>
<tr>
<th>Front Layer (Glass or ETFE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encapsulant (EVA or PVB)</td>
</tr>
<tr>
<td>Silicon Cells</td>
</tr>
<tr>
<td>Encapsulant (EVA or PVB)</td>
</tr>
<tr>
<td>Fluoropolymer</td>
</tr>
<tr>
<td>Backsheet</td>
</tr>
<tr>
<td>PET</td>
</tr>
<tr>
<td>Fluoropolymer</td>
</tr>
</tbody>
</table>
Composite Photovoltaic Backsheet

PET Based Backsheet

- **Film**: Polyester
- **Adhesive**: PET Based Film

Coated Backsheet

- **Polyester**
- **Fluorocoating**

Film Laminate Backsheet

- **Polyester**
- **Fluorinated Film Adhesive**
- **Fluorinated Film**

Table of Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>PET</th>
<th>Coating Type</th>
<th>Film Laminated Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backsheet Layers/Interfaces</td>
<td>3-5/2-4</td>
<td>3/2</td>
<td>5/4</td>
</tr>
<tr>
<td>Adhesive Layer</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Chemical Foundation</td>
<td>Polyester</td>
<td>4F (TFE)</td>
<td>1F (PVF)/ 2F (PVDF)</td>
</tr>
<tr>
<td>Years Outdoor Exposure Data</td>
<td>~15</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Cost/Performance</td>
<td>Fair</td>
<td>Excellent</td>
<td>Good</td>
</tr>
</tbody>
</table>
Backsheet Performance Comparison

- **Fluoropolymers**
 - UV resistance
 - Strength and durability
 - Resistance to weathering
 - Electrical insulation

- **Strength of the carbon-fluorine bond**
 - C-F 116 kcal/mol
 - C-H 95 kcal/mol
 - C-Cl 78 kcal/mol

- **Fluoropolymers already used in the industry**
 - PVF and PVDF laminates.
 - ZEFFLE™ differs from these due to its use of Tetrafluoroethylene
ZEFFLE™

- Solvent-based
- Developed for building coating
 - Decades of history of good weathering properties
 - Works well in salt water environments
- Resist long-term exposure to ultraviolet light, heat, and humidity

![Chemical structure diagram of TFE copolymer with weatherability and cross-linkage notes]

TFE copolymer

- Room temp. coating
- Solvent solubility

September 20, 2012

Ken Milam, et al.
Daikin America, Inc.
Backsheets Tested

<table>
<thead>
<tr>
<th>Construction</th>
<th>Sample Name</th>
<th>Materials</th>
<th>Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeffle PET Zeffle</td>
<td>ZPZ</td>
<td>Commercially Available</td>
<td>Commercially Available</td>
</tr>
<tr>
<td>Zeffle PET Primer</td>
<td>ZPE</td>
<td>Commercially Available</td>
<td>Commercially Available</td>
</tr>
<tr>
<td>Tedlar PET Tedlar</td>
<td>TPT</td>
<td>Commercially Available</td>
<td>Commercially Available</td>
</tr>
<tr>
<td>Tedlar PET Primer</td>
<td>TPE</td>
<td>Commercially Available</td>
<td>Commercially Available</td>
</tr>
<tr>
<td>Kynar PET Primer</td>
<td>KPE</td>
<td>Commercially Available</td>
<td>Commercially Available</td>
</tr>
<tr>
<td>PET PET Primer #1</td>
<td>PPE # 1</td>
<td>Commercially Available</td>
<td>Commercially Available</td>
</tr>
<tr>
<td>PET PET Primer #2</td>
<td>PPE # 2</td>
<td>Commercially Available</td>
<td>Developmental Lamination</td>
</tr>
</tbody>
</table>
Sample Accelerated Aging

- Exposed samples to UV, temperature and humidity fluctuations.
- Atlas Ci5000
 - ASTM G155
 - 120 min cycle
 - 0.35 W/m²
 - 63°C rack, 42°C chamber
 - Phase one: 102 min, 50% RH
 - Phase two: 18 min, constant spray of RO/DI water

- Outer layer towards the light source
 - Inner layer open to machine
- Tests were ongoing until we reached a failure point.
- Required unrealistic time scales for practical testing.
Dosage vs Real World

- 0.35 W/m² is assumed to be the average irradiance during the equinox in South Florida
- This gives us an acceleration factor of 2 to 1
- 1000 hrs of testing = ~84 days of real world solar exposure
 - 7000 hours = ~588 days = ~1.61 years
- This test does not come close to demonstrating extended lifetime performance
 - Designed only to show infant mortality only
Gloss

- Early indicator of the start of problems
- Measured multiple angles
 - 20° low gloss
 - 60° semi gloss
 - 85° high gloss
- Initial gloss levels vary widely
 - Interested in change over time
Gloss

- Gloss results
 - PPE#2 backsheets exhibited a step change in all gloss angles at 2000 hours
 - Both PET based backsheets exhibit significantly decreased gloss
 - Set original value as 100%
 - 95% confidence interval shown with Y axis error bars

<table>
<thead>
<tr>
<th>Sample</th>
<th>Age</th>
<th>% 20° Gloss Retention</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZPZ</td>
<td>7000</td>
<td>85.2 %</td>
</tr>
<tr>
<td>ZPE</td>
<td>7000</td>
<td>106.6 %</td>
</tr>
<tr>
<td>TPT</td>
<td>7000</td>
<td>63.4 %</td>
</tr>
<tr>
<td>TPE</td>
<td>7000</td>
<td>74.9 %</td>
</tr>
<tr>
<td>KPE</td>
<td>7000</td>
<td>73.0 %</td>
</tr>
<tr>
<td>PPE #1</td>
<td>7000</td>
<td>10.1 %</td>
</tr>
<tr>
<td>PPE #2</td>
<td>5000</td>
<td>1.6 %</td>
</tr>
</tbody>
</table>
PET shows a significant decrease in gloss over time.
Color

• Color changes indicate differences in the condition of a surface.
• Yellowness index using ASTM E313
• Initial values also varied widely here, please compare changes.
• Confidence Intervals of 95% are also shown here.
PET shows significant yellowing over time.
Color

- Exposed area vs. the area covered by the sample holder

<table>
<thead>
<tr>
<th>ZPZ 7000 hours</th>
<th>PPE #2 2000 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposed</td>
<td>Covered</td>
</tr>
<tr>
<td>Covered</td>
<td>Exposed</td>
</tr>
</tbody>
</table>

PPE #2 visibly degrades after only 500 hours under UV.
Color

- **PET Samples**
 - PPE #2 exhibited the most change
 - Visible change at 500 hours
 - 2000 hours

- **Fluoropolymer samples**
 - Little to no change in coloration even after 7000 hours
Tensile Strength

• Following ASTM 882
 – Determine the change in mechanical properties
 – Initial strain rate was set to 10 mm/mm-min.
 – Each exposure condition was tested.

• In the following graph tensile stress at break is shown.
 • Confidence Intervals at 95%
Tensile Strength

Percent Retention of Maximum Tensile Strength

PPE loses Tensile strength faster than all other materials.
Single sided samples lose tensile strength faster than double sided.
Tensile Strength

• Some deterioration was observed
 – Some samples have failed (70% of the original properties) after several thousand hours of testing
 – Failures due to humidity or irradiation or both?
• PPE #2 samples failed first
• Some asymmetric samples (i.e. TPE, KPE) have begun to show deterioration.
• Samples protected from both sides have not failed after 7000 hours
Adhesion

- **ASTM 3359**
 - 10 by 10 set of 1 mm squares.
 - Apply Permacel 99 tape and wait for 90 seconds.
 - Removed at 180° and a steady rate.
 - Rating it 0A through 5A.
 - # of squares not damaged.
 - 0 to 100 where 100 is the best result.
 - Test 5 locations per sample and average.

- Confirmed testing was uniform across all samples.
 - 180° Peel test on Instron @ 250 mm/min.

<table>
<thead>
<tr>
<th>Sample</th>
<th>N/cm ± 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZPZ</td>
<td>4.67 ± 0.63</td>
</tr>
<tr>
<td>TPT</td>
<td>4.71 ± 0.36</td>
</tr>
<tr>
<td>PPE #2</td>
<td>4.94 ± 0.33</td>
</tr>
</tbody>
</table>
Adhesion

No Fluoropolymers fail adhesion at 7000 hours.

<table>
<thead>
<tr>
<th>Exposure Time</th>
<th>ZPZ</th>
<th>ZPE</th>
<th>TPT</th>
<th>TPE</th>
<th>KPE</th>
<th>PET #1</th>
<th>PET #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>1000</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>92.4</td>
</tr>
<tr>
<td>2000</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>24</td>
</tr>
<tr>
<td>3000</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>6000</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>7000</td>
<td>100</td>
<td>99.4</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>
Adhesion

- PPE #2 delaminates completely by 3000 hours
 - Failure of interlayer adhesive
- Laminated constructions all share the concern of failed adhesive
 - TPT and PPE are incorrect
Backsheet Results

<table>
<thead>
<tr>
<th>Sample Name</th>
<th>2000 Hour Results</th>
<th>7000 Hour Results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gloss</td>
<td>Color</td>
</tr>
<tr>
<td>ZPZ</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ZPE</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>TPT</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>TPE</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>KPE</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PPE # 1</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PPE # 2</td>
<td>✗</td>
<td>✗</td>
</tr>
</tbody>
</table>

Legend: ✓ = Pass, ✗ = Fail
Conclusions

• Fluorinated materials
 – Little to no significant changes in backsheets protected on both sides
 – Samples beginning to fail only at 6000 and 7000 hours for samples protected on one side

• Degradation Evident in PPE Constructions
 – Loss of gloss in both samples
 – Significant changes in the coloration
 – Delamination
 – Failure in the maximum tensile stress
Conclusions

• Solar panels are expected to last 20-30 years
• Current test method requires a very weak dosage
 – Very long testing times
• More stringent sunlight exposure will help accelerated testing
• Materials protected with fluoropolymers from both sides show the best performance over time
Thank you for your time.

Questions or Comments?

Daikin America, Inc.
2749 Hwy. 20
Decatur, AL 35601
Phone: (256) 260-6308
Web: www.Daikin.com
Email: milam2@daikin-america.com